Database-friendly random projections: Johnson-Lindenstrauss with binary coins

نویسنده

  • Dimitris Achlioptas
چکیده

A classic result of Johnson and Lindenstrauss asserts that any set of n points in d-dimensional Euclidean space can be embedded into k-dimensional Euclidean space—where k is logarithmic in n and independent of d—so that all pairwise distances are maintained within an arbitrarily small factor. All known constructions of such embeddings involve projecting the n points onto a spherically random k-dimensional hyperplane through the origin. We give two constructions of such embeddings with the property that all elements of the projection matrix belong in f 1; 0;þ1g: Such constructions are particularly well suited for database environments, as the computation of the embedding reduces to evaluating a single aggregate over k random partitions of the attributes. r 2003 Elsevier Science (USA). All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Fast Johnson-lindenstrauss Transform

While we omit the proof, we remark that it is constructive. Specifically, A is a linear map consisting of random projections onto subspaces of Rd. These projections can be computed by n matrix multiplications, which take time O(nkd). This is fast enough to make the Johnson-Lindenstrauss transform (JLT) a practical and widespread algorithm for dimensionality reduction, which in turn motivates th...

متن کامل

Johnson-lindenstrauss Dimensionality Reduction on the Simplex

We propose an algorithm for dimensionality reduction on the simplex, mapping a set of high-dimensional distributions to a space of lower-dimensional distributions, whilst approximately preserving pairwise Hellinger distance between distributions. By introducing a restriction on the input data to distributions that are in some sense quite smooth, we can map n points on the d-simplex to the simpl...

متن کامل

Machine Learning Friendly Set Version of Johnson-Lindenstrauss Lemma

In this paper we make a novel use of the Johnson-Lindenstrauss Lemma. The Lemma has an existential form saying that there exists a JL transformation f of the data points into lower dimensional space such that all of them fall into predefined error range δ. We formulate in this paper a theorem stating that we can choose the target dimensionality in a random projection type JL linear transformati...

متن کامل

Johnson-lindenstrauss Transformation and Random Projection

We give a brief survey of Johnson-Lindenstrauss lemma. CONTENTS

متن کامل

236779: Foundations of Algorithms for Massive Datasets Lecture 4 the Johnson-lindenstrauss Lemma

The Johnson-Lindenstrauss lemma and its proof This lecture aims to prove the Johnson–Lindenstrauss lemma. Since the lemma is proved easily with another interesting lemma, a part of this lecture is focused on the proof of this second lemma. At the end, the optimality of the Johnson–Lindenstrauss lemma is discussed. Lemma 1 (Johnson-Lindenstrauss). Given the initial space X ⊆ R n s.t. |X| = N , <...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Syst. Sci.

دوره 66  شماره 

صفحات  -

تاریخ انتشار 2003